Math 55 Quiz 2 DIS 106

Name: \qquad 7 Feb 2022

1. Show that there exists a unique positive integer x such that $x^{2}+6 x=16$.

Notice that $2^{2}+6 \times 2=16$, hence $x^{2}+6 x=16$ has a solution for positive integer x. For uniqueness, suppose that $x^{2}+6 x=16$ for some positive integer x, then

$$
(x-2)(x+8)=x^{2}+6 x-16=0
$$

Hence $x-2=0$ or $x+8=0$; in other words $x=2$ or $-8 . x$ is positive hence is not -8 , so $x=2$. This shows that 2 is the unique positive integer solution for x.
2. Prove or disprove that for all sets A, B,
(a) $A \cap B \subseteq A \cup B$
(b) $A \cap(\bar{A} \cup B)=B$
(a) This is true. Suppose $x \in A \cap B$. This means that $x \in A$ and $x \in B$. Hence $x \in A$ or $x \in B$, so $x \in A \cup B$.
(b) This is false. Suppose $U=\{1,2,3\}, A=\{1,2\}, B=\{2,3\}$. Then $A \cap(\bar{A} \cup B)=\{2\} \neq$ $\{2,3\}=B$

